DocumentCode :
2146973
Title :
Mining Web Access Log for the Personalization Recommendation
Author :
Peng, Xueping ; Cao, Yujuan ; Niu, Zhendong
Author_Institution :
Sch. of Comput. Sci. & Technol., Beijing Inst. of Technol., Beijing
fYear :
2008
fDate :
30-31 Dec. 2008
Firstpage :
172
Lastpage :
175
Abstract :
This paper presents a personalization recommendation model to recommend potentially interesting resources to users based on the Web access log of users. This model builds on the apriori algorithm and the tf-idf technology, which consists of three parts: resource description, user´s preference extraction and the personalization recommendation. Firstly, our model generates resource text space vector by analyzing the resource information achieved by mining user´s Web access log, then it attains interest set to make use of the apriori algorithm based on the vector, finally, it recommends filtered and sorted resources to users content based recommendation model.
Keywords :
content-based retrieval; information filtering; information filters; Web access log mining; apriori algorithm; personalization recommendation model; resource description; resource text space vector; tf-idf technology; user preference extraction; Association rules; Data mining; Filtering algorithms; Information filtering; Information filters; Information technology; Itemsets; Paper technology; Space technology; Transaction databases; Apriori Algorithm; Content-Based Filtering; DF-RTF Algorithm; Personalization Recommendation Model; Vector Space Model; Web Access Log Mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
MultiMedia and Information Technology, 2008. MMIT '08. International Conference on
Conference_Location :
Three Gorges
Print_ISBN :
978-0-7695-3556-2
Type :
conf
DOI :
10.1109/MMIT.2008.166
Filename :
5089088
Link To Document :
بازگشت