DocumentCode :
2147091
Title :
Applying Csiszár´s I-divergence to blind sparse channel estimation
Author :
Wan, Feng ; Mitra, Urbashi
Author_Institution :
Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
2924
Lastpage :
2927
Abstract :
Compressed sensing (CS) has renewed interest in sparse channel estimation. Herein, a semi-blind, iterative, sparse channel estimation method is proposed. The new method is based on minimizing Csiszar´s I-divergence using Schulz & Snyder´s iterative deautocorrelation algorithm. First, it is shown that the desired methods can be adapted to the problem of interest. The proposed semi-blind method accurately estimates the significant tap locations of a sparse channel, and their corresponding magnitudes. A method for determining the channel coefficients up to a phase ambiguity is presented. The simulation results show that although limited pilots are used, the proposed semi-blind iterative algorithm achieves performance comparable to that of training-based compressed sensing methods.
Keywords :
channel estimation; correlation methods; iterative methods; Csiszar´s I-divergence; Schulz & Snyder´s iterative deautocorrelation algorithm; blind sparse channel estimation; channel coefficients; iterative channel estimation method; phase ambiguity; semiblind channel estimation method; semiblind method; sparse channel estimation method; tap locations; training-based compressed sensing methods; Channel estimation; Compressed sensing; Correlation; Equations; Estimation; Iterative methods; OFDM; Csiszár´s I-divergence; OFDM; compressed sensing; semi-blind; sparse channel estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946269
Filename :
5946269
Link To Document :
بازگشت