DocumentCode :
2147451
Title :
CLT for eigen-inference methods in cognitive radios
Author :
Yao, Jianfeng ; Couillet, Romain ; Najim, Jamal ; Motilities, Eric ; Debbati, Merouane
Author_Institution :
Telecom ParisTech, Paris, France
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
2980
Lastpage :
2983
Abstract :
This article provides a central limit theorem for a consistent estimator of the population eigenvalues of a class of sample covariance matrices. An exact expression as well as an empirical and asymptotically accurate approximation of the limiting variance is also derived. These results are applied in a cognitive radio context featuring an orthogonal-CDMA primary network and a secondary network whose objective is to maximise the coverage of secondary transmissions under low probability of interference with primary users.
Keywords :
code division multiple access; cognitive radio; covariance matrices; eigenvalues and eigenfunctions; interference suppression; probability; CLT; central limit theorem; cognitive radio; consistent estimator; covariance matrices; eigen inference methods; orthogonal CDMA; population eigenvalues; probability; Cognitive radio; Context; Covariance matrix; Distribution functions; Eigenvalues and eigenfunctions; Estimation; Limiting; CLT; G-estimation; cognitive radios;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946284
Filename :
5946284
Link To Document :
بازگشت