DocumentCode :
2151741
Title :
CATALYST: Planning layer directives for effective design closure
Author :
Wei, Yaoguang ; Li, Zhuo ; Sze, Cliff ; Hu, Shiyan ; Alpert, Charles J. ; Sapatnekar, Sachin S.
Author_Institution :
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, 55455, USA
fYear :
2013
fDate :
18-22 March 2013
Firstpage :
1873
Lastpage :
1878
Abstract :
For the last several technology generations, VLSI designs in new technology nodes have had to confront the challenges associated with reduced scaling in wire delays. The solution from industrial back-end-of-line process has been to add more and more thick metal layers to the wiring stacks. However, existing physical synthesis tools are usually not effective in handling these new thick layers for design closure. To fully leverage these degrees of freedom, it is essential for the design flow to provide better communication among the timer, the router, and different optimization engines. This work proposes a new algorithm, CATALYST, to perform congestion- and timing-aware layer directive assignment. Our flow balances routing resources among metal stacks so that designs benefit from the availability of thick metal layers by achieving improved timing and buffer usage reduction while maintaining routability. Experiments demonstrate the effectiveness of the proposed algorithm.
Keywords :
Delays; Metals; Optimization; Routing; Wires;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
Conference_Location :
Grenoble, France
ISSN :
1530-1591
Print_ISBN :
978-1-4673-5071-6
Type :
conf
DOI :
10.7873/DATE.2013.373
Filename :
6513819
Link To Document :
بازگشت