DocumentCode :
2154508
Title :
Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery
Author :
Altmann, Yoann ; Halimi, Abderrahim ; Dobigeon, Nicolas ; Tourneret, Jean-Yves
Author_Institution :
IRIT/INP-ENSEEIHT, Univ. of Toulouse, Toulouse, France
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
1009
Lastpage :
1012
Abstract :
This paper studies a hierarchical Bayesian model for nonlinear hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are polynomial functions of linear mixtures of pure spectral components contaminated by an additive white Gaussian noise. The parameters involved in this model satisfy constraints that are naturally expressed within a Bayesian framework. A Gibbs sampler allows one to sample the unknown abundances and nonlinearity parameters according to the joint posterior of interest. The performance of the resulting unmixing strategy is evaluated thanks to simulations conducted on synthetic and real data.
Keywords :
AWGN; Bayes methods; geophysical image processing; image sampling; polynomials; spectral analysis; Gibbs sample; additive white Gaussian noise; hierarchical Bayesian model; hyperspectral imagery; nonlinearity parameters; polynomial post nonlinear model; spectral components; supervised nonlinear spectral unmixing; Argon; Bayesian methods; Hyperspectral imaging; Pixel; Polynomials; MCMC methods; Post nonlinear mixing model; hierarchical Bayesian analysis; hyperspectral images;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946577
Filename :
5946577
Link To Document :
بازگشت