Title :
Keypoint-based near-duplicate images detection using affine invariant feature and color matching
Author :
Wang, Yue ; Hou, Zujun ; Leman, Karianto
Author_Institution :
Inst. for Infocomm Res., A*STAR (Agency for Sci., Technol. & Res.), Singapore, Singapore
Abstract :
This paper presents a new keypoint-based approach to near-duplicate images detection. It consists of three steps. Firstly, the keypoints of images are extracted and then matched. Secondly, the matched keypoints are voted for estimation of affine transform based on an affine invariant ratio of normalized lengths. Finally, to further confirm the matching, the color histograms of areas formed by matched keypoints in two images are compared. This method has the advantage for handling the case when there are only a few matched keypoints. The proposed algorithm has been tested on Columbia dataset and conducted the quantitative comparison with RANdom SAmple Consensus (RANSAC) algorithm and Scale-Rotation Invariant Pattern Entropy (SR-PE) algorithm. The experiment result turns out that the proposed method compares favorably against the state-of-the-arts.
Keywords :
affine transforms; entropy; feature extraction; image colour analysis; image matching; Columbia dataset; RANSAC algorithm; SR-PE algorithm; affine invariant feature matching; color histograms; color matching; feature extraction; keypoint-based near-duplicate image detection; random sample consensus algorithm; scale-rotation invariant pattern entropy algorithm; Estimation; Feature extraction; Histograms; Image color analysis; Lighting; Neodymium; Transforms; Near-duplicate detection; affine invariant feature; color matching; image matching;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2011.5946627