DocumentCode :
2156197
Title :
A Classified Method of Human Hair for Hair Sketching
Author :
Min, Feng ; Zeng, Kun ; Sang, Nong
Volume :
4
fYear :
2008
fDate :
27-30 May 2008
Firstpage :
109
Lastpage :
114
Abstract :
Human hair has significant effect on the life-likeness of human portrait and human recognition. In this paper, we present a classified method of human hair for hair sketching. We extract shape and appearance features from the training data of hair, including hair raw images and their corresponding sketching templates. Based on these features, we learn twenty-four hairstyles. Given a human hair raw image, we extract its shape and appearance features and find the best matched hair style and sketching template by Nearest Neighbor from twenty-four hairstyles. Taking the template as prototype, a new hair sketching corresponding to the raw image can be generalized by Thin Plate Spline. We test our algorithm to a large data set of hair images with diverse hair styles, experimental results demonstrate the effectiveness of our method.
Keywords :
Computer vision; Data mining; Hair; Humans; Nearest neighbor searches; Pattern recognition; Prototypes; Shape; Spline; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Signal Processing, 2008. CISP '08. Congress on
Conference_Location :
Sanya, China
Print_ISBN :
978-0-7695-3119-9
Type :
conf
DOI :
10.1109/CISP.2008.127
Filename :
4566626
Link To Document :
بازگشت