DocumentCode :
2164657
Title :
N dimensional Mojette transform. Application to multiple description
Author :
Verbert, Pierre ; Guédon, Jeanpierre
Author_Institution :
Ecole Polytechnique de l´´Univ. de Nantes, France
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
1211
Abstract :
The Mojette transform allows to exactly represent a discrete signal from a finite set of hyper-planes. This generic transform (many projection directions, choice of the number of projections, spline order) always ensures a very low complexity comparable to the FFT. In this paper, the Mojette transform in dimension n is presented and results issued from 2D and 3D cases are generalized. The central slice theorem, used with the Radon transform, is also derived in dimension n. Two schemes of applicatives examples enlight the interest for this generalization in the domain of multiple description.
Keywords :
Radon transforms; computational complexity; signal representation; 2D cases; 3D cases; Radon transform; central slice theorem; complexity; discrete signal; hyper-planes; many projection directions; multiple description; n dimensional Mojette transform; spline order; Discrete transforms; Fourier transforms; Image reconstruction; Information theory; Karhunen-Loeve transforms; Neodymium; Sorting; Spline; Time frequency analysis; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on
Print_ISBN :
0-7803-7503-3
Type :
conf
DOI :
10.1109/ICDSP.2002.1028311
Filename :
1028311
Link To Document :
بازگشت