DocumentCode :
2165349
Title :
Nonlinear invariance: cross-positive vector fields
Author :
Meyer, David G. ; Piatt, Teri L. ; Wadley, Haydn N.G. ; Vancheeswaran, Ravi
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA
Volume :
1
fYear :
1998
fDate :
21-26 Jun 1998
Firstpage :
308
Abstract :
This paper introduces the concept of cross-positivity for vector fields and explores ramifications of cross-positivity relative to solutions of ordinary differential equations. The motivation is to understand the dynamic behavior of systems where the natural physics place constraints on the vector field. Our results extend to nonlinear systems several well-known results about properties of x˙=Ax when A satisfies special conditions
Keywords :
differential equations; invariance; matrix algebra; nonlinear systems; set theory; vectors; cross-positive vector fields; dynamic behavior; nonlinear invariance; ordinary differential equations; Capacitive sensors; Contracts; Differential equations; Laboratories; Linear systems; Materials science and technology; Nonlinear systems; Path planning; Physics; Virtual prototyping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1998. Proceedings of the 1998
Conference_Location :
Philadelphia, PA
ISSN :
0743-1619
Print_ISBN :
0-7803-4530-4
Type :
conf
DOI :
10.1109/ACC.1998.694681
Filename :
694681
Link To Document :
بازگشت