Author :
Knoll, D. ; Rucker, H. ; Heinemann, B. ; Barth, R. ; Bauer, J. ; Bolze, D. ; Ehwald, K.E. ; Grabolla, T. ; Haak, U. ; Hunger, B. ; Kruger, D. ; Kurps, R. ; Marschmeyer, S. ; Richter, H.H. ; Schley, P. ; Tillack, B. ; Winkler, W.
Abstract :
Demonstrates a novel HBT-before-CMOS integration scheme to integrate SiGe:C HBTs with a 130 nm gate length CMOS frontend. This scheme entirely eliminates the impact of the HBT thermal steps on CMOS characteristics, opening the way for easy, modular integration of high-performance HBTs into highly scaled CMOS technologies. C doping of the SiGe layer prevents the degradation of HBT parameters by critical CMOS thermal steps. This is demonstrated for SiGe:C HBTs with f/sub T//f/sub max/ values of 80/90 GHz fabricated in the HBT-before-CMOS scheme and in a benchmark HBT-only process.
Keywords :
BiCMOS integrated circuits; Ge-Si alloys; heterojunction bipolar transistors; integrated circuit technology; semiconductor materials; 130 nm; 80 GHz; 90 GHz; BiCMOS integration scheme; CMOS thermal steps; HBT-before-CMOS; SiGe:C; modular integration; scaled technologies; BiCMOS integrated circuits; CMOS process; CMOS technology; Doping; Germanium silicon alloys; Heterojunction bipolar transistors; Oxidation; Radio frequency; Silicon germanium; Thermal degradation;