DocumentCode :
2168518
Title :
Multi-sensor PHD: Construction and implementation by space partitioning
Author :
Delande, E. ; Duflos, E. ; Vanheeghe, P. ; Heurguier, D.
Author_Institution :
LAGIS FRE CNRS 3303, Ecole Centrale de Lille, 59651 Villeneuve d´´Ascq, France
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
3632
Lastpage :
3635
Abstract :
The Probability Hypothesis Density (PHD) is a well-known method for single-sensor multi-target tracking problems in a Bayesian framework, but the extension to the multi-sensor case seems to remain a challenge. In this paper, an extension of Mahler´s work to the multi-sensor case provides an expression of the true PHD multi-sensor data update equation. Then, based on the configuration of the sensors´ fields of view (FOVs), a joint partitioning of both the sensors and the state space provides an equivalent yet more practical expression of the data update equation, allowing a more effective implementation in specific FOV configurations.
Keywords :
Bayesian methods; Computational efficiency; Equations; Force; Joints; Mathematical model; Sensors; Multi-sensor system; Multi-target tracking; Probability Hypothesis Density;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague, Czech Republic
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5947137
Filename :
5947137
Link To Document :
بازگشت