DocumentCode :
2168815
Title :
Robust filtering for uncertain linear descriptor systems
Author :
de Souza, Carlos E. ; Barbosa, Karina A.
Author_Institution :
Dept. of Syst. & Control, Lab. Nac. de Comput. Cienc. (LNCC/MCT), Petropolis, Brazil
fYear :
2007
fDate :
2-5 July 2007
Firstpage :
2867
Lastpage :
2874
Abstract :
This paper is concerned with the problem of robust filtering for uncertain linear descriptor systems. The matrices of the system state-space model are uncertain, belonging to a given polytope. A method based on a parameter-dependent Lyapunov function is proposed for designing a linear stationary filter that ensures an optimized upper-bound on the asymptotic error variance, irrespective of the parameter uncertainty. The proposed design is given in terms of linear matrix inequalities which depend on a scalar parameter that should be searched for in order to optimize the filter performance.
Keywords :
Lyapunov methods; convex programming; filtering theory; linear matrix inequalities; linear systems; state-space methods; uncertain systems; asymptotic error variance; filter performance optimization; linear matrix inequalities; linear stationary filter design; optimized upper-bound; parameter uncertainty; parameter-dependent Lyapunov function; polytope; robust filtering problem; scalar parameter; uncertain linear descriptor systems; uncertain system state-space model matrices; Estimation error; Linear matrix inequalities; Lyapunov methods; Nickel; Robustness; Symmetric matrices; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2007 European
Conference_Location :
Kos
Print_ISBN :
978-3-9524173-8-6
Type :
conf
Filename :
7068833
Link To Document :
بازگشت