DocumentCode :
2169632
Title :
Cutting Temperature and Surface Roughness Optimization in CNC End Milling Using Multi Objective Genetic Algorithm
Author :
Al Hazza, Muataz Hazza F. ; Adesta, Erry Y. T. ; Superianto, M.Y. ; Riza, M.
Author_Institution :
Fac. of Eng., Int. Islamic Univ. Malaysia, Kuala Lumpur, Malaysia
fYear :
2012
fDate :
26-28 Nov. 2012
Firstpage :
275
Lastpage :
278
Abstract :
Machining of hard materials at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality. Thus, developing a model for estimating the cutting parameters and optimizing this model to minimize the cutting temperatures and surface roughness becomes utmost important to avoid any damage to the quality surface. This paper presents the development of new models and optimizing these models of machining parameters to minimize the cutting temperature in end milling process by integrating the genetic algorithm (GA) with the statistical approach. The mathematical models for the cutting temperature and surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Two objectives have been considered, minimum cutting temperature and minimum arithmetic mean roughness (Ra). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed.
Keywords :
computerised numerical control; cutting; genetic algorithms; milling; quality control; response surface methodology; statistical analysis; surface roughness; CNC end milling; MOGA; RSM; cut axial depth; cutting parameter estimation; cutting speed; cutting temperature minimization; cutting zone; feed rate; hard material machining; machining optimization problem complexity; machining parameter; mathematical model; milling process; minimum arithmetic mean roughness; multiobjective genetic algorithm; response methodology method; statistical approach; surface damage; surface quality; surface roughness optimization; surface roughness parameter; AISI H13. End milling; MOGA; Optimization; surface roughness; temperature;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computer Science Applications and Technologies (ACSAT), 2012 International Conference on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4673-5832-3
Type :
conf
DOI :
10.1109/ACSAT.2012.39
Filename :
6516365
Link To Document :
بازگشت