DocumentCode :
2169864
Title :
Bayesian Fault Diagnosis of RF Circuits Using Nonparametric Density Estimation
Author :
Huang, Ke ; Stratigopoulos, Haralampos G. ; Mir, Salvador
Author_Institution :
TIMA Lab., UJF, Grenoble, France
fYear :
2010
fDate :
1-4 Dec. 2010
Firstpage :
295
Lastpage :
298
Abstract :
This paper discusses a Bayesian fault diagnosis scheme for RF circuits. We use non-idealized spot defect models by taking into account both their resistive and capacitive behavior at the layout level. The likelihoods in the Bayes rule are estimated using nonparametric kernel density estimation. Our case study is an RF low noise amplifier. The diagnosis decisions and the subsequent defect ambiguity analysis are demonstrated using post-layout simulations.
Keywords :
analogue circuits; belief networks; fault diagnosis; Bayesian fault diagnosis; RF circuits; RF low noise amplifier; non-idealized spot defect models; nonparametric kernel density estimation; Circuit faults; Dictionaries; Fault diagnosis; Integrated circuit modeling; Kernel; Radio frequency; Resistance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Test Symposium (ATS), 2010 19th IEEE Asian
Conference_Location :
Shanghai
ISSN :
1081-7735
Print_ISBN :
978-1-4244-8841-4
Type :
conf
DOI :
10.1109/ATS.2010.57
Filename :
5692262
Link To Document :
بازگشت