Title :
Performance bounds for sparse parametric covariance estimation in Gaussian models
Author :
Jung, Alexander ; Schmutzhard, Sebastian ; Hlawatsch, Franz ; Hero, Alfred O., III
Author_Institution :
Inst. of Telecommun., Vienna Univ. of Technol., Vienna, Austria
Abstract :
We consider estimation of a sparse parameter vector that determines the covariance matrix of a Gaussian random vector via a sparse expansion into known "basis matrices." Using the theory of reproducing kernel Hilbert spaces, we derive lower bounds on the variance of estimators with a given mean function. This includes unbiased estimation as a special case. We also present a numerical comparison of our lower bounds with the variance of two standard estimators (hard-thresholding estimator and maximum likelihood estimator).
Keywords :
Gaussian processes; Hilbert spaces; covariance matrices; maximum likelihood estimation; signal processing; sparse matrices; Gaussian model; Gaussian random vector; covariance matrix; kernel Hilbert space; performance bound; sparse expansion; sparse parameter vector estimation; sparse parametric covariance estimation; standard estimator variance; Covariance matrix; Hilbert space; Indexes; Kernel; Maximum likelihood estimation; Signal to noise ratio; RKHS; Sparsity; reproducing kernel Hilbert space; sparse covariance estimation; variance bound;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2011.5947268