DocumentCode :
2173196
Title :
Kernel-based parametric validity index for assessing clusters from microarray gene expression data
Author :
Fa, Rui ; Nandi, Asoke K.
Author_Institution :
Dept. of Electr. Eng. & Electron., Univ. of Liverpool, Liverpool, UK
fYear :
2012
fDate :
23-26 Sept. 2012
Firstpage :
1
Lastpage :
6
Abstract :
In this paper, we develop a kernel-based parametric validity index (KPVI), which not only inherits robust feature from the newly proposed PVI, but possesses extra superiority inherited from the kernel method. The KPVI employs the kernel method to calculate both the inter-cluster and the intra cluster dissimilarities. Furthermore, we develop several rules to guide the selection of parameter values by examining the dissimilarity densities of different datasets such that the maximal appropriate values of the parameters for individual dataset can be obtained. We evaluate the new KPVI for assessing five clustering algorithms in both synthetic and real gene expression datasets. The experimental results support that the KPVI has the most superior performance among the existing validation algorithms, even better than the PVI.
Keywords :
biology computing; pattern clustering; KPVI; cluster assessment; clustering algorithms; dataset dissimilarity density; intercluster dissimilarity; intracluster dissimilarity; kernel method; kernel-based parametric validity index; microarray gene expression data; parameter values selection; real gene expression datasets; synthetic gene expression datasets; Clustering algorithms; Gene expression; Indexes; Kernel; Noise; Noise level; Robustness; clustering validation; gene expression data; kernel method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on
Conference_Location :
Santander
ISSN :
1551-2541
Print_ISBN :
978-1-4673-1024-6
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2012.6349780
Filename :
6349780
Link To Document :
بازگشت