DocumentCode :
2173426
Title :
Long term human activity recognition with automatic orientation estimation
Author :
Florentino-Lia, Blanca ; O´Mahony, Niamh ; Artés-Rodríguez, Antonio
Author_Institution :
Dept. of Signal Theor. & Commun., Univ. Carlos III de Madrid, Leganes, Spain
fYear :
2012
fDate :
23-26 Sept. 2012
Firstpage :
1
Lastpage :
6
Abstract :
This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.
Keywords :
biomedical equipment; medical signal processing; object recognition; sensors; automatic orientation estimation; human daily activity recognition; long term human activity recognition; single miniature inertial sensor; time intervals; virtual sensor orientation; Acceleration; Estimation; Gravity; Hidden Markov models; Humans; Legged locomotion; Vectors; Activity recognition; orientation estimation; wearable sensors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on
Conference_Location :
Santander
ISSN :
1551-2541
Print_ISBN :
978-1-4673-1024-6
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2012.6349789
Filename :
6349789
Link To Document :
بازگشت