DocumentCode :
2173621
Title :
Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
Author :
Piché, Robert ; Särkkä, Simo ; Hartikainen, Jouni
Author_Institution :
Dept. of Math., Tampere Univ. of Technol., Tampere, Finland
fYear :
2012
fDate :
23-26 Sept. 2012
Firstpage :
1
Lastpage :
6
Abstract :
Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student´s t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.
Keywords :
Kalman filters; nonlinear filters; nonlinear systems; Rauch-Tung-Striebel smoother type recursive estimators; alternative methods; computer simulation; dynamic models; measurement models; multivariate student t-distributed measurement noise; multivariate student-t distribution; nonlinear Gaussian filtering; nonlinear Kalman filter; nonlinear Kalman-type filters; nonlinear discrete-time state space models; nonlinear systems; recursive outlier-robust filtering; recursive outlier-robust smoothing; smoothing approach; variational Bayes method; Approximation methods; Computational modeling; Kalman filters; Noise; Noise measurement; Smoothing methods; Time measurement; Gaussian filter; Gaussian smoother; Robust filtering; Robust smoothing; Variational Bayes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on
Conference_Location :
Santander
ISSN :
1551-2541
Print_ISBN :
978-1-4673-1024-6
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2012.6349794
Filename :
6349794
Link To Document :
بازگشت