DocumentCode :
2173941
Title :
Quantifying spatiotemporal dynamics of twitter replies to news feeds
Author :
Biessmann, F. ; Papaioannou, J.-M. ; Harth, A. ; Jugel, M.L. ; Müller, K. -R ; Braun, M.
Author_Institution :
Dept. Machine Learning, Berlin Inst. of Technol., Berlin, Germany
fYear :
2012
fDate :
23-26 Sept. 2012
Firstpage :
1
Lastpage :
6
Abstract :
Social network analysis can be used to assess the impact of information published on the web. The spatiotemporal impact of a certain web source on a social network can be of particular interest. We contribute a novel statistical learning algorithm for spatiotemporal impact analysis. To demonstrate our approach we analyze Twitter replies to individual news article along with their geospatial and temporal information. We then compute the multivariate spatiotemporal response pattern of all Twitter replies to information published on a given web source. This quantitative result can be interpreted with respect to a) how much impact a certain web source has on the Twitter-sphere b) where and c) when it reaches it maximal impact. We also show that the proposed approach predicts the dynamics of the social network activity better than classical trend detection methods.
Keywords :
Internet; electronic publishing; information retrieval; learning (artificial intelligence); social networking (online); spatiotemporal phenomena; statistical analysis; Twitter reply analysis; Web source; geospatial information; information assess; information publishing; multivariate spatiotemporal response pattern; news feeds; social network activity; social network analysis; spatiotemporal impact analysis; statistical learning algorithm; temporal information; Feature extraction; Kernel; Market research; Principal component analysis; Spatiotemporal phenomena; Time series analysis; Twitter; Social network analysis; canonical trends; spatiotemporal dynamics; tkCCA;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on
Conference_Location :
Santander
ISSN :
1551-2541
Print_ISBN :
978-1-4673-1024-6
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2012.6349806
Filename :
6349806
Link To Document :
بازگشت