DocumentCode :
2174159
Title :
Dyadic and √3-subdivision for uniform Powell-Sabin splines
Author :
Vanraes, Evelyne ; Windmolders, Joris ; Bultheel, Adhemar ; Dierckx, Paul
Author_Institution :
Dept. of Comput. Sci., Katholieke Univ., Leuven, Belgium
fYear :
2002
fDate :
2002
Firstpage :
639
Lastpage :
643
Abstract :
We give two different possibilities for subdivision of Powell-Sabin spline surfaces on uniform triangulations. In the first case, dyadic subdivision, a new vertex is introduced on each edge between two old vertices. In the second case, √3-subdivision, a new vertex is introduced in the center of each triangle of the triangulation. We give subdivision rules to find the new control points of the refined surface for both cases.
Keywords :
CAD; computational geometry; splines (mathematics); √3-subdivision; Powell-Sabin spline surfaces; control points; dyadic subdivision; refined surface; uniform triangulations; vertex; Character generation; Computer science; Displays; Packaging; Piecewise linear techniques; Polynomials; Refining; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Visualisation, 2002. Proceedings. Sixth International Conference on
ISSN :
1093-9547
Print_ISBN :
0-7695-1656-4
Type :
conf
DOI :
10.1109/IV.2002.1028842
Filename :
1028842
Link To Document :
بازگشت