DocumentCode :
2181613
Title :
The power of geometric duality
Author :
Chazelle, Bernard ; Guibas, Leo J. ; Lee, D.T.
fYear :
1983
fDate :
7-9 Nov. 1983
Firstpage :
217
Lastpage :
225
Abstract :
This paper uses a new formulation of the notion of duality that allows the unified treatment of a number of geometric problems. In particular, we are able to apply our approach to solve two long-standing problems of computational geometry: one is to obtain a quadratic algorithm for computing the minimum-area triangle with vertices chosen among n points in the plane; the other is to produce an optimal algorithm for the half-plane range query problem. This problem is to preprocess n points in the plane, so that given a test half-plane, one can efficiently determine all points lying in the half-plane. We describe an optimal O(k + log n) time algorithm for answering such queries, where k is the number of points to be reported. The algorithm requires O(n) space and O(n log n) preprocessing time. Both of these results represent significant improvements over the best methods previously known. In addition, we give a number of new combinatorial results related to the computation of line arrangements.
Keywords :
Clocks; Computational geometry; Ear; Equations; H infinity control; Testing; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1983., 24th Annual Symposium on
Conference_Location :
Tucson, AZ, USA
ISSN :
0272-5428
Print_ISBN :
0-8186-0508-1
Type :
conf
DOI :
10.1109/SFCS.1983.75
Filename :
4568081
Link To Document :
بازگشت