DocumentCode :
2183326
Title :
A method for decentralized control design in spatially invariant arrays
Author :
De Castro, Gustavo Ayres ; Paganini, Fernando
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
Volume :
1
fYear :
2003
fDate :
4-6 June 2003
Firstpage :
125
Abstract :
In this paper, we derive an integral quadratic constraint (IQC) that proves stability of a spatially invariant array of systems. The IQC involves only the expression of a local system (unit) in the array, and is equivalent to a scaled small gain condition in a transformed version of the local unit. This IQC is used to develop a method based on the D-K iteration to design decentralized controllers for stabilizing the array.
Keywords :
Fourier transforms; control system synthesis; decentralised control; iterative methods; linear quadratic control; stability; D-K iteration; Fourier transform; decentralized controller; integral quadratic constraint; local system; scaled small gain condition; spatially invariant arrays; stability; transformed version; Bismuth; Centralized control; Control systems; Design methodology; Distributed control; Lyapunov method; Paper making machines; Stability analysis; State-space methods; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2003. Proceedings of the 2003
ISSN :
0743-1619
Print_ISBN :
0-7803-7896-2
Type :
conf
DOI :
10.1109/ACC.2003.1238925
Filename :
1238925
Link To Document :
بازگشت