Title : 
Minimum variance estimation with uncertain statistical model
         
        
            Author : 
Calafiore, Giuseppe ; Ghaoui, Laurent El
         
        
            Author_Institution : 
Dipt. di Autom. e Inf., Politecnico di Torino, Italy
         
        
        
        
        
        
            Abstract : 
We consider the problem of parameter estimation in a linear stochastic model, where the observations are affected by noise with uncertain variance. In particular, we discuss a linear estimator which minimizes a worst-case measure of the a-posteriori covariance of the parameters. The estimate is efficiently computed by means of convex programming, and may be updated with upcoming observations in a recursive setting
         
        
            Keywords : 
convex programming; linear systems; minimax techniques; parameter estimation; stochastic systems; uncertain systems; convex programming; covariance uncertainty; linear systems; minimax technique; minimum variance estimation; optimization; parameter estimation; stochastic systems; uncertain statistical model; Covariance matrix; Gaussian noise; Minimax techniques; Noise measurement; Parameter estimation; Particle measurements; Recursive estimation; Robustness; Stochastic resonance; Vectors;
         
        
        
        
            Conference_Titel : 
Decision and Control, 2001. Proceedings of the 40th IEEE Conference on
         
        
            Conference_Location : 
Orlando, FL
         
        
            Print_ISBN : 
0-7803-7061-9
         
        
        
            DOI : 
10.1109/.2001.980400