DocumentCode :
2184741
Title :
How to generate and exchange secrets
Author :
Yao, Andrew
fYear :
1986
fDate :
27-29 Oct. 1986
Firstpage :
162
Lastpage :
167
Abstract :
In this paper we introduce a new tool for controlling the knowledge transfer process in cryptographic protocol design. It is applied to solve a general class of problems which include most of the two-party cryptographic problems in the literature. Specifically, we show how two parties A and B can interactively generate a random integer N = p¿q such that its secret, i.e., the prime factors (p, q), is hidden from either party individually but is recoverable jointly if desired. This can be utilized to give a protocol for two parties with private values i and j to compute any polynomially computable functions f(i,j) and g(i,j) with minimal knowledge transfer and a strong fairness property. As a special case, A and B can exchange a pair of secrets sA, sB, e.g. the factorization of an integer and a Hamiltonian circuit in a graph, in such a way that sA becomes computable by B when and only when sB becomes computable by A. All these results are proved assuming only that the problem of factoring large intergers is computationally intractable.
Keywords :
Circuits; Computer science; Cryptographic protocols; Cryptography; History; Knowledge transfer; Polynomials; Privacy; Probability distribution; Turing machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1986., 27th Annual Symposium on
Conference_Location :
Toronto, ON, Canada
ISSN :
0272-5428
Print_ISBN :
0-8186-0740-8
Type :
conf
DOI :
10.1109/SFCS.1986.25
Filename :
4568207
Link To Document :
بازگشت