DocumentCode :
2184836
Title :
The minimum principle for deterministic impulsive control systems
Author :
Chudoung, Jerawan ; Beck, Carolyn
Author_Institution :
Illinois Univ., Urbana, IL, USA
Volume :
4
fYear :
2001
fDate :
2001
Firstpage :
3569
Abstract :
We prove the minimum principle for an optimal impulsive control problem. This result is a generalization of the well-known Pontryagin minimum principle, and yields a necessary condition for an optimal impulsive control strategy that minimizes an associated cost. Furthermore, we establish an explicit connection between the value function arising from the dynamic programming principle approach and the costate arising from the minimum principle approach for the impulsive optimal control problem
Keywords :
dynamic programming; minimum principle; nonlinear dynamical systems; Pontryagin minimum principle; costate; deterministic impulsive control systems; dynamic programming principle approach; necessary condition; value function; Control systems; Cost function; Dynamic programming; Equations; Lagrangian functions; Optimal control; Portable media players; Viscosity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2001. Proceedings of the 40th IEEE Conference on
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-7061-9
Type :
conf
DOI :
10.1109/.2001.980413
Filename :
980413
Link To Document :
بازگشت