DocumentCode :
2186642
Title :
Lower bounds to randomized algorithms for graph properties
Author :
Yao, Andrew Chi-Chih
fYear :
1987
fDate :
12-14 Oct. 1987
Firstpage :
393
Lastpage :
400
Abstract :
For any property P on n-vertex graphs, let C(P) be the minimum number of edges that need to be examined by any decision tree algorithm for determining P. In 1975 Rivest and Vuillemin settled the Aanderra-Rosenberg Conjecture, proving that C(P) = Ω(n2) for every nontrivial monotone graph property P. An intriguing open question is whether the theorem remains true when randomized algorithms are allowed. In this paper we report progress on this problem, showing that Ω(n(log n)1/12) edges must be examined by a randomized algorithm for determining any nontrivial monotone graph property.
Keywords :
Boolean functions; Computer science; Costs; Decision trees;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1987., 28th Annual Symposium on
Conference_Location :
Los Angeles, CA, USA
ISSN :
0272-5428
Print_ISBN :
0-8186-0807-2
Type :
conf
DOI :
10.1109/SFCS.1987.39
Filename :
4568293
Link To Document :
بازگشت