DocumentCode :
2192976
Title :
Evaluation of Protein Backbone Alphabets: Using Predicted Local Structure for Fold Recognition
Author :
Shim, Kyong Jin
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
fYear :
2010
fDate :
13-13 Dec. 2010
Firstpage :
755
Lastpage :
762
Abstract :
Optimally combining available information is one of the key challenges in knowledge-driven prediction techniques. In this study, we evaluate six Phi and Psi-based backbone alphabets. We show that the addition of predicted backbone conformations to SVM classifiers can improve fold recognition. Our experimental results show that the inclusion of predicted backbone conformations in our feature representation leads to higher overall accuracy compared to when using amino acid residues alone.
Keywords :
biology computing; molecular configurations; pattern classification; proteins; proteomics; support vector machines; Phi-based backbone alphabets; Psi-based backbone alphabets; SVM classifiers; amino acid residues; fold recognition; knowledge-driven prediction; predicted local structure; protein backbone alphabets; backbone alphabet; fold recognition; local structure; protein backbone;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-1-4244-9244-2
Electronic_ISBN :
978-0-7695-4257-7
Type :
conf
DOI :
10.1109/ICDMW.2010.168
Filename :
5693372
Link To Document :
بازگشت