DocumentCode :
2194786
Title :
Parallelized Boosting with Map-Reduce
Author :
Palit, Indranil ; Reddy, Chandan K.
Author_Institution :
Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA
fYear :
2010
fDate :
13-13 Dec. 2010
Firstpage :
1346
Lastpage :
1353
Abstract :
In this paper, we propose two novel algorithms, ADABOOST.PL (Parallel ADABOOST) and LOGITBOOST.PL (Parallel LOGITBOOST), that facilitate simultaneous participation of multiple computing nodes to construct a boosted classifier. Our algorithms can induce boosted models whose generalization performance is close to the respective baseline classifier. By exploiting their own parallel architecture both the algorithms gain significant speedup. We used the Map-Reduce framework to implement our algorithms and experimented on a variety of synthetic and real-world data sets to demonstrate the performance in terms of classification accuracy, speedup and scaleup.
Keywords :
learning (artificial intelligence); parallel algorithms; pattern classification; set theory; AdaBoost.PL; LogitBoost.PL; Map-Reduce framework; baseline classifier; boosted classifier; boosted models; classification accuracy; generalization performance; multiple computing nodes; parallel AdaBoost; parallel LogitBoost; parallel algorithms; parallel architecture; real-world data sets; Boosting; classification; distributed computing; parallel algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-1-4244-9244-2
Electronic_ISBN :
978-0-7695-4257-7
Type :
conf
DOI :
10.1109/ICDMW.2010.180
Filename :
5693449
Link To Document :
بازگشت