DocumentCode :
2204087
Title :
Nonlinear parameter prediction of fossil power plant based on OSC-KPLS
Author :
Zhang, Xi ; Chen, Shihe ; Yan, Weiwu ; Shao, Huihe
Author_Institution :
Guangdong Electr. Power Res. Inst., China Southern Power Grid, Guangzhou, China
fYear :
2011
fDate :
6-8 June 2011
Firstpage :
672
Lastpage :
675
Abstract :
In order to solve problems of the failure of measured parameters and realize online optimal running in fossil power plant, a novel parameter prediction and estimation method based on orthogonal signal correction (OSC) and kernel partial least squares (KPLS) is proposed. OSC is a data preprocessing method that remove from X information not correlated to Y. Kernel partial least square is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. In this paper, the prediction performance of the proposed approach (OSC-KPLS) is compared to those of PLS, OSC-PLS and KPLS using industrial example. OSC-KPLS effectively simplifies both the structure and interpretation of the resulting regression model and shows superior prediction performance compared to PLS, OSC-PLS and KPLS.
Keywords :
least squares approximations; parameter estimation; regression analysis; steam power stations; OSC-KPLS; data preprocessing method; estimation method; fossil power plant; kernel partial least squares; nonlinear kernel function; nonlinear parameter prediction method; orthogonal signal correction; regression coefficients; regression method; Data models; Estimation; Kernel; Laboratories; Predictive models; Fossil power plant; Inferential control; Kernel partial least squares (KPLS); Nonlinear; Parameter estimation; orthogonal signal correction (OSC);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Automation (ICIA), 2011 IEEE International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4577-0268-6
Electronic_ISBN :
978-1-4577-0269-3
Type :
conf
DOI :
10.1109/ICINFA.2011.5949078
Filename :
5949078
Link To Document :
بازگشت