DocumentCode :
2205952
Title :
Fault Detection in Distributed Climate Sensor Networks Using Dynamic Bayesian Networks
Author :
Chin, George, Jr. ; Choudhury, Sutanay ; Kangas, Lars ; McFarlane, Sally ; Marquez, Andres
Author_Institution :
Pacific Northwest Nat. Lab., Richland, WA, USA
fYear :
2010
fDate :
7-10 Dec. 2010
Firstpage :
121
Lastpage :
128
Abstract :
The Atmospheric Radiation Measurement (ARM) program operated by the U.S. Department of Energy is one of the largest climate research programs dedicated to the collection of long-term continuous measurements of cloud properties and other key components of the earth´s climate system. Given the critical role that collected ARM data plays in the analysis of atmospheric processes and conditions and in the enhancement and evaluation of global climate models, the production and distribution of high-quality data is one of ARM´s primary mission objectives. Fault detection in ARM´s distributed sensor network is one critical ingredient towards maintaining high quality and useful data. We are modeling ARM´s distributed sensor network as a dynamic Bayesian network where key measurements are mapped to Bayesian network variables. We then define the conditional dependencies between variables by discovering highly correlated variable pairs from historical data. The resultant dynamic Bayesian network provides an automated approach to identifying whether certain sensors are malfunctioning or failing in the distributed sensor network. A potential fault or failure is detected when an observed measurement is not consistent with its expected measurement and the observed measurements of other related sensors in the Bayesian network. We present some of our experiences and promising results with the fault detection dynamic Bayesian network.
Keywords :
atmospheric radiation; belief networks; climatology; distributed sensors; fault diagnosis; geophysics computing; US Department of Energy; atmospheric process analysis; atmospheric radiation measurement program; climate research programs; cloud properties; distributed climate sensor networks; dynamic Bayesian network; earth climate system; fault detection; Bayesian methods; Computational modeling; Fault detection; Inference algorithms; Junctions; Meteorology; Temperature measurement; anomaly detection; climate data; distributed sensor networks; dynamic Bayesian networks; fault detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
e-Science (e-Science), 2010 IEEE Sixth International Conference on
Conference_Location :
Brisbane, QLD
Print_ISBN :
978-1-4244-8957-2
Electronic_ISBN :
978-0-7695-4290-4
Type :
conf
DOI :
10.1109/eScience.2010.22
Filename :
5693908
Link To Document :
بازگشت