Title :
Surface curvature estimation from the signed distance field
Author_Institution :
Intelligent Syst. Inst., Nat. Inst. of Adv. Ind. Sci. & Technol., Ibaraki, Japan
Abstract :
We propose a method of computing surface curvature properties from the signed distance field (SDF) samples in the 3D space. The SDF representation contains information of the surface normal at the closest point on the surface from the sampling point. The variance of these information from different sampling points within the neighborhood reflects the curvature information. Because this sampling is done in the 3D space, we do not directly referees to the parametric surface coordinates or polygon structures. The computation is stable because it requires only linear algebraic operations. It is possible to extract multiple scale curvatures by changing sampling interval. The proposed method was applied on real data, and result of multiscale curvature extraction is presented.
Keywords :
computational geometry; curve fitting; image reconstruction; image sampling; surface fitting; 3D space; image sampling; linear algebraic operation; multiscale curvature extraction; polygon structure; sampling interval; signed distance field; surface curvature estimation; surface normal; Computer vision; Coordinate measuring machines; Data mining; Intelligent systems; Nonlinear filters; Object recognition; Sampling methods; Shape measurement; Space technology; Surface fitting;
Conference_Titel :
3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on
Print_ISBN :
0-7695-1991-1
DOI :
10.1109/IM.2003.1240270