DocumentCode :
2207873
Title :
Target-surround feature attention model of visual tracking
Author :
Huang, Yu-Wei ; Lin, Wei-Song ; Lin, Ru-Je
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan
fYear :
2011
fDate :
11-15 April 2011
Firstpage :
79
Lastpage :
84
Abstract :
This paper presents a target-surround feature attention (TSFA) model for constructing attention-based visual tracking algorithm. This model extracts attentive region by distinguishing the color contrast between the interested target and its surround. A preference generator provides online feature transformation to update the target/surround biasing masks that describes the color composition associated with the target and its surround. Output of the TSFA model is a saliency map representing occurrence possibility of the target. Tracker based on the mean shift algorithm is used to lock and locate the target on the saliency map. Experimental results show that visual tacking algorithm with the TSFA model may adapt to noisy images under changing illumination.
Keywords :
feature extraction; image colour analysis; target tracking; attention-based visual tracking algorithm; attentive region extraction; color composition; color contrast; mean shift algorithm; online feature transformation; preference generator; saliency map; target-surround feature attention model; Computational modeling; Feature extraction; Image color analysis; Pixel; Target tracking; Visualization; computational visual attention model; computer vision; visual attention; visual tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2011 IEEE Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-9913-7
Type :
conf
DOI :
10.1109/CIMSIVP.2011.5949234
Filename :
5949234
Link To Document :
بازگشت