DocumentCode :
2207923
Title :
Multimodal optimization in the context of Sparse Component Analysis
Author :
Nadalin, Everton Z. ; Boccato, Levy ; Attux, Romis ; Duarte, Leonardo T. ; Lopes, Amauri ; Romano, João Marcos T ; Suyama, Ricardo
Author_Institution :
DCA, Univ. of Campinas (UNICAMP), Campinas, Brazil
fYear :
2011
fDate :
11-15 April 2011
Firstpage :
85
Lastpage :
91
Abstract :
In this work, we investigate the use of a multimodal search framework to deal with a representative formulation of the Sparse Component Analysis (SCA) problem. The proposed method, which employs an artificial immune network in the role of multimodal optimization tool, is explained and tested in different scenarios. The results are promising and indicate the relevance of using global search tool in SCA, as well as the soundness of the immune-inspired proposal.
Keywords :
blind source separation; independent component analysis; optimisation; artificial immune network; blind source separation; multimodal optimization; multimodal search framework; sparse component analysis; Cloning; Context; Estimation; Immune system; Optimization; Sensors; Source separation; artificial immune systems; multimodal optimization; source separation; sparse component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2011 IEEE Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-9913-7
Type :
conf
DOI :
10.1109/CIMSIVP.2011.5949237
Filename :
5949237
Link To Document :
بازگشت