Title :
Empirical evaluation of optimized stacking configurations
Author :
Ledezma, Agapito ; Aler, Ricardo ; Sanchis, Araceli ; Borrajo, Daniel
Author_Institution :
Univ. Carlos III de Madrid, Spain
Abstract :
Stacking is one of the most used techniques for combining classifiers and improves prediction accuracy. Early research in stacking showed that selecting the right classifiers, their parameters and the metaclassifiers was the main bottleneck for its use. Most of the research on this topic selects by hand the right combination of classifiers and their parameters. Instead of starting from these initial strong assumptions, our approach uses genetic algorithms to search for good stacking configurations. Since this can lead to overfitting, one of the goals of This work is to evaluate empirically the overall efficiency of the approach. A second goal is to compare our approach with current best stacking building techniques. The results show that our approach finds stacking configurations that, in the worst case, perform as well as the best techniques, with the advantage of not having to set up manually the structure of the stacking system.
Keywords :
data structures; genetic algorithms; learning (artificial intelligence); pattern classification; search problems; genetic algorithms; machine learning; optimized stacking configuration; stacking building method; supervised learning; Accuracy; Bagging; Boosting; Buildings; Genetic algorithms; Machine learning; Neural networks; Stacking; Supervised learning; Voting;
Conference_Titel :
Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on
Print_ISBN :
0-7695-2236-X
DOI :
10.1109/ICTAI.2004.56