Title :
Mixture models for optical flow computation
Author :
Jepson, Allan ; Black, Michael J.
Author_Institution :
Dept. of Comput. Sci., Toronto Univ., Ont., Canada
Abstract :
The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions
Keywords :
image sequences; maximum likelihood estimation; parameter estimation; probability; 2-D image velocity; component velocity measurements; maximum likelihood estimate; merging; multiple motions; occlusion boundaries; optical flow computation; outliers; probabilistic mixture model; transparency; Computer science; Image motion analysis; Layout; Maximum likelihood detection; Maximum likelihood estimation; Merging; Motion detection; Motion estimation; Optical computing; Robustness; Velocity measurement;
Conference_Titel :
Computer Vision and Pattern Recognition, 1993. Proceedings CVPR '93., 1993 IEEE Computer Society Conference on
Conference_Location :
New York, NY
Print_ISBN :
0-8186-3880-X
DOI :
10.1109/CVPR.1993.341161