DocumentCode :
2241379
Title :
Unsupervised segmentation of textured color images using Markov random field models
Author :
Panjwani, Dileep K. ; Healey, Glenn
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA
fYear :
1993
fDate :
15-17 Jun 1993
Firstpage :
776
Lastpage :
777
Abstract :
An unsupervised segmentation algorithm which uses Markov random fields for modeling color texture is presented. These models characterize a texture in terms of spatial interaction within each color plane and interaction among different color planes. These models are used for segmentation in conjunction with an agglomerative clustering procedure that at each step minimizes a global performance functional based on the conditional pseudo-likelihood of the image. This algorithm is successfully applied to a range of textured color images of natural scenes
Keywords :
Markov processes; image segmentation; image texture; maximum likelihood estimation; parameter estimation; Markov random field models; agglomerative clustering procedure; color plane; conditional pseudo-likelihood; global performance functional; natural scenes; spatial interaction; textured color images; unsupervised segmentation; Additive noise; Clustering algorithms; Color; Colored noise; Image processing; Image segmentation; Layout; Markov random fields; Pixel; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1993. Proceedings CVPR '93., 1993 IEEE Computer Society Conference on
Conference_Location :
New York, NY
ISSN :
1063-6919
Print_ISBN :
0-8186-3880-X
Type :
conf
DOI :
10.1109/CVPR.1993.341170
Filename :
341170
Link To Document :
بازگشت