DocumentCode :
2242165
Title :
Stability and Hopf bifurcation analysis in a delay Swarms model
Author :
Feng, Liu ; Xiang, Yin ; Guang, Ling ; Zhi-Hong, Guan ; Hua, O.Wang
Author_Institution :
School of Automation, China University of Geosciences, Wuhan 430074, China
fYear :
2015
fDate :
28-30 July 2015
Firstpage :
1049
Lastpage :
1053
Abstract :
In this paper, the problem of Hopf bifurcation for a swarm model of self-propelled agents in the presence of noise and communication time delay is studied. When the value of delayed communication time passes through a critical value, Hopf bifurcation will occur, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle, the swarm is transformed from a misaligned state into an aligned state. Using a mean field model, we prove the existence of bifurcation and gave the existence conditions of bifurcation. Numerical results have been presented to verify the theoretical results.
Keywords :
Analytical models; Bifurcation; Control systems; Delay effects; Mathematical model; Numerical stability; Stability analysis; Control; Hopf bifurcation; Stability; Swarm model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2015 34th Chinese
Conference_Location :
Hangzhou, China
Type :
conf
DOI :
10.1109/ChiCC.2015.7259778
Filename :
7259778
Link To Document :
بازگشت