DocumentCode :
2242660
Title :
Statistical modeling of video object´s behavior for improved object tracking in visual surveillance
Author :
Yin, Guo Qing ; Bruckner, Dietmar ; Zucker, Gerhard
Author_Institution :
Inst. of Comput. Technol., Vienna Univ. of Technol., Vienna, Austria
fYear :
2009
fDate :
23-25 Sept. 2009
Firstpage :
1
Lastpage :
6
Abstract :
This paper describes a post processing method for detected video objects to enhance the quality of detection. Starting with a basic set of video parameters (such as video frame and time, label of objects, the objects position in pixel, the width and height of object\´s bounding box) statistical parameters (such as arithmetic mean and standard deviation) about features are computed and with these parameters different statistical models are built. These models can be used to estimate the "normality" of an object\´s behavior.
Keywords :
image resolution; object detection; statistical analysis; video signal processing; video surveillance; object tracking; statistical modeling; video object behavior; video object detection; visual surveillance; Arithmetic; Data analysis; Data security; Europe; Object detection; Probability; Random variables; Surveillance; System testing; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
AFRICON, 2009. AFRICON '09.
Conference_Location :
Nairobi
Print_ISBN :
978-1-4244-3918-8
Electronic_ISBN :
978-1-4244-3919-5
Type :
conf
DOI :
10.1109/AFRCON.2009.5308178
Filename :
5308178
Link To Document :
بازگشت