DocumentCode :
2242822
Title :
Performance Data Extrapolation in Parallel Codes
Author :
Gonzalez, Juan ; Gimenez, Judit ; Labarta, Jesus
Author_Institution :
Barcelona Supercomput. Center, Universistat Politec. de Catalunya, Barcelona, Spain
fYear :
2010
fDate :
8-10 Dec. 2010
Firstpage :
155
Lastpage :
163
Abstract :
Measuring the performance of parallel codes is a compromise between lots of factors. The most important one is which data has to be analyzed. Current supercomputers are able to run applications in large number of processors as well as the analysis data that can be extracted is also large and varied. That implies a hard compromise between the potential problems one want to analyze and the information one is able to capture during the application execution. In this paper we present an extrapolation methodology to maximize the information extracted in a single application execution. It is based on a structural characterization of the applications, performed using clustering techniques, the ability to multiplex the read of performance hardware counters, plus a projection process. As a result, we obtain the approximated values of a large set of metrics for each phase of the application, with minimum error.
Keywords :
codes; extrapolation; clustering technique; data extrapolation; parallel code; performance hardware counter; projection process; Clustering; Parallel Applications; Performance Analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on
Conference_Location :
Shanghai
ISSN :
1521-9097
Print_ISBN :
978-1-4244-9727-0
Electronic_ISBN :
1521-9097
Type :
conf
DOI :
10.1109/ICPADS.2010.79
Filename :
5695598
Link To Document :
بازگشت