Title : 
New results for estimation of Hausdorff dimension
         
        
            Author : 
Pogromsky, A.Yu. ; Nijmeijer, H.
         
        
            Author_Institution : 
Dept. of Electr. Eng., Eindhoven Univ. of Technol., Netherlands
         
        
        
        
        
        
            Abstract : 
In this paper we present two approaches to estimate the Hausdorff dimension of an invariant compact set of a dynamical system: the method of characteristic exponents (estimates of the Kaplan-Yorke type) and the method of Lyapunov functions. In the first approach, using Lyapunov´s first method we exploit characteristic exponents for obtaining such estimates. A close relationship with uniform asymptotic stability is established. A second bound for the Hausdorff dimension is obtained by exploiting Lyapunov´s direct method and thus relies on the use of certain Lyapunov functions
         
        
            Keywords : 
Lyapunov methods; asymptotic stability; nonlinear dynamical systems; set theory; Hausdorff dimension; Kaplan-Yorke type estimates; Lyapunov functions; characteristic exponents; dynamical system; invariant compact set; uniform asymptotic stability; Asymptotic stability; Eigenvalues and eigenfunctions; H infinity control; Linear systems; Lyapunov method; Mechanical engineering; Stability analysis; Tellurium; Time varying systems;
         
        
        
        
            Conference_Titel : 
Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on
         
        
            Conference_Location : 
Geneva
         
        
            Print_ISBN : 
0-7803-5482-6
         
        
        
            DOI : 
10.1109/ISCAS.2000.857071