Title :
Controlling a marionette with human motion capture data
Author :
Yamane, Katsu ; Hodgins, Jessica K. ; Brown, H. Benjamin
Author_Institution :
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
Abstract :
In this paper, we present a method for controlling a motorized, string-driven marionette using motion capture data from human actors. The motion data must be adapted for the marionette because its kinematic and dynamic properties differ from those of the human actor in degrees of freedom, limb length, workspace, mass distribution, sensors, and actuators. This adaptation is accomplished via an inverse kinematics algorithm that takes into account marker positions, joint motion ranges, string constraints, and potential energy. We also apply a feedforward controller to prevent extraneous swings of the hands. Experimental results show that our approach enables the marionette to perform motions that are qualitatively similar to the original human motion capture data.
Keywords :
feedforward; manipulator kinematics; motion control; actuators; degrees of freedom; feedforward; human actors; human motion capture data; inverse kinematics algorithm; joint motion ranges; limb length; marionette control; mass distribution; potential energy; sensors; string constraints; string driven marionette; Actuators; Fingers; Humanoid robots; Humans; Kinematics; Motion control; Robot control; Robot programming; Servomechanisms; Servomotors;
Conference_Titel :
Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on
Print_ISBN :
0-7803-7736-2
DOI :
10.1109/ROBOT.2003.1242185