DocumentCode :
2247894
Title :
Joint computation of principal and minor components using gradient dynamical systems over stiefel manifolds
Author :
Hasan, Mohammed A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Minnesota Duluth, Duluth, MN, USA
fYear :
2008
fDate :
9-11 Dec. 2008
Firstpage :
3287
Lastpage :
3292
Abstract :
This paper presents several dynamical systems for simultaneous computation of principal and minor subspaces of a symmetric matrix. The proposed methods are derived from optimizing cost functions which are chosen to have optimal values at vectors that are linear combinations of extreme eigenvectors of a given matrix. Necessary optimality conditions are given in terms of a gradient of certain cost functions over a Stiefel manifold. Stability analysis of equilibrium points of six algorithms is established using Liapunov direct method.
Keywords :
Lyapunov methods; eigenvalues and eigenfunctions; matrix algebra; principal component analysis; time-varying systems; Liapunov direct method; Stiefel manifolds; extreme eigenvectors; gradient dynamical systems; minor components; principal components; stability analysis; symmetric matrix; Control systems; Cost function; Eigenvalues and eigenfunctions; Manifolds; Optimization methods; Principal component analysis; Signal analysis; Signal processing algorithms; Symmetric matrices; Vectors; Eigenvalue spread; Gradient dynamical systems; Joint PCA-MCA; Joint PSAMSA; Oja’s Rule; Stiefel manifold;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on
Conference_Location :
Cancun
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3123-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2008.4739097
Filename :
4739097
Link To Document :
بازگشت