DocumentCode :
2249587
Title :
Identifying periodicity of microarray gene expression profiles by autoregressive modeling and spectral estimation
Author :
Tang, Tsz-yan ; Yan, Hong
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China
Volume :
6
fYear :
2010
fDate :
11-14 July 2010
Firstpage :
3062
Lastpage :
3066
Abstract :
We proposed an effective algorithm to analyze the periodicity of noisy microarray time series data. Each DNA microarray chip produces thousands of gene expressions. The data have a high level of noise, which make it a challenge to identity characteristics of the genes. Our algorithm is based on singular value decomposition (SVD), singular spectrum analysis (SSA) and autoregressive (AR) model-based spectral estimation. We have applied our algorithm to simulated noisy gene expression profiles and Plasmodium falciparum data, and the result shows that the algorithm is able to remove noise such that periodic genes expression profiles can be identified accurately.
Keywords :
genetics; medical computing; singular value decomposition; time series; Plasmodium falciparum data; autoregressive model based spectral estimation; microarray gene expression; singular spectrum analysis; singular value decomposition; time series data; DNA; Data models; Gene expression; Mathematical model; Noise; Spectral analysis; Time series analysis; Autoregressive (AR) model; Plasmodium falciparum; Singular spectrum analysis (SSA); Singular value decomposition (SVD); Time series data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics (ICMLC), 2010 International Conference on
Conference_Location :
Qingdao
Print_ISBN :
978-1-4244-6526-2
Type :
conf
DOI :
10.1109/ICMLC.2010.5580747
Filename :
5580747
Link To Document :
بازگشت