Title :
Designing optimal fault tolerant Jacobian for robotic manipulators
Author :
Abdi, Hamid ; Nahavandi, Saeid
Author_Institution :
Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
Abstract :
Fault tolerance of robotic manipulators is determined based on the fault tolerance measures. In this study a Jacobian of a 7DOF optimal fault tolerant manipulator is designed based on optimality of worse case relative manipulability and worse case dexterity from geometric perspective instead of numerical solution of constrained optimisation problem or construction of optimal Jacobian through a desired null space. The proposed Jacobian matrix is optimal and equally fault tolerant for a single joint failure within any joint of the manipulators.
Keywords :
Jacobian matrices; dexterous manipulators; fault tolerance; geometry; optimal control; 7 DOF optimal fault tolerant manipulator design; Jacobian matrix; dexterity; geometric perspective; optimal fault tolerant Jacobian; robotic manipulator; Fault tolerance; Fault tolerant systems; Jacobian matrices; Joints; Kinematics; Manipulators; Null space; Dexterity; Optimal Jacobian; Optimal fault tolerant; Relative manipulability; Serial link manipulator;
Conference_Titel :
Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on
Conference_Location :
Montreal, ON
Print_ISBN :
978-1-4244-8031-9
DOI :
10.1109/AIM.2010.5695928