DocumentCode :
2251654
Title :
Using polynomial semi-separable kernels to construct infinite-dimensional Lyapunov functions
Author :
Peet, Matthew M. ; Papachristodoulou, Antonis
Author_Institution :
Dept. of Mech., Illinois Inst. of Technol., Chicago, IL, USA
fYear :
2008
fDate :
9-11 Dec. 2008
Firstpage :
847
Lastpage :
852
Abstract :
In this paper, we introduce the class of semi-separable kernel functions for use in constructing Lyapunov functions for distributed-parameter systems such as delay-differential equations. We then consider the subset of semi-separable kernel functions defined by polynomials. We show that the set of such kernels which define positive forms can be parameterized by positive semidefinite matrices. In the particular case of linear time-delay systems, we show how to construct the derivative of Lyapunov functions defined by piecewise continuous semi-separable kernels and give numerical examples which illustrate some advantages over standard polynomial kernel functions.
Keywords :
delay systems; delays; distributed parameter systems; linear systems; matrix algebra; piecewise polynomial techniques; state-space methods; distributed-parameter system; infinite-dimensional Lyapunov function; linear time-delay system; piecewise continuous semi separable; polynomial semi separable kernel; semidefinite matrix; state space method; Aerospace engineering; Aerospace materials; Aerospace testing; Control systems; Delay systems; Equations; Kernel; Lyapunov method; Polynomials; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on
Conference_Location :
Cancun
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3123-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2008.4739245
Filename :
4739245
Link To Document :
بازگشت