DocumentCode :
2252031
Title :
Mixed-Mode Artificial Neuron for CMOS Integration
Author :
Zatorre, Guillermo ; Medrano, Nicolás ; Sanz, M. Teresa ; Martínez, Pedro A. ; Celma, Santiago
Author_Institution :
Grupo de Diseno Electron., Universidad de Zaragoza
fYear :
2006
fDate :
16-19 May 2006
Firstpage :
381
Lastpage :
384
Abstract :
A new approach to designing artificial neurons in CMOS technology is proposed in this paper. Design and simulation results of the basic building blocks are presented. Programmable weights are obtained using a current-mode mixed-signal four-quadrant multiplier, whereas the non-linear output function is implemented with a specifically designed class AB current conveyor. Starting from circuit simulation results, the behaviour of the proposed neuron was modeled. A multilayer perceptron network implemented with the new artificial neuron structure was trained to tackle linearization of a giant magneto-resistive sensor. Simulation results show the efficiency of the new implementation
Keywords :
CMOS integrated circuits; analogue-digital conversion; current-mode circuits; magnetoresistive devices; mixed analogue-digital integrated circuits; multilayer perceptrons; multiplying circuits; sensors; CMOS integration; circuit simulation; class AB current conveyor; current-mode mixed-signal four-quadrant multiplier; giant magneto-resistive sensor; mixed-mode artificial neuron; multilayer perceptron network; nonlinear output function; programmable weights; Analog-digital conversion; Artificial neural networks; CMOS technology; Circuit simulation; Energy consumption; Inverters; Magnetic sensors; Multilayer perceptrons; Neurons; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrotechnical Conference, 2006. MELECON 2006. IEEE Mediterranean
Conference_Location :
Malaga
Print_ISBN :
1-4244-0087-2
Type :
conf
DOI :
10.1109/MELCON.2006.1653118
Filename :
1653118
Link To Document :
بازگشت