DocumentCode :
2252093
Title :
Constrained NMPC via state-space partitioning for input-affine non-linear systems
Author :
Bacic, Marko ; Cannon, Mark ; Kouvaritakis, Basil
Author_Institution :
Dept. of Eng. Sci., Oxford Univ., UK
Volume :
6
fYear :
2003
fDate :
4-6 June 2003
Firstpage :
4881
Abstract :
State-space partitioning and judicious use of graph theory is deployed to propose a novel nonlinear model predictive control (NMPC) approach that is suitable for fast sampling applications. The efficacy of the approach is demonstrated by means of a design study.
Keywords :
graph theory; nonlinear systems; predictive control; sampling methods; state-space methods; constrained NMPC; fast sampling application; graph theory; input-affine nonlinear system; nonlinear model predictive control; nonlinear optimization; state-space partitioning; Computational efficiency; Constraint theory; Costs; Graph theory; Infinite horizon; Optimal control; Partitioning algorithms; Predictive control; Sampling methods; Stability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2003. Proceedings of the 2003
ISSN :
0743-1619
Print_ISBN :
0-7803-7896-2
Type :
conf
DOI :
10.1109/ACC.2003.1242496
Filename :
1242496
Link To Document :
بازگشت