DocumentCode :
2253454
Title :
Necessary and sufficient conditions for common quadratic Lyapunov functions for a pair of stable LTI systems whose system matrices are in companion form
Author :
Shorten, Robert N. ; Narendra, Kumpati S.
Author_Institution :
Hamilton Inst., Nat. Univ. of Ireland, Maynooth, Ireland
Volume :
6
fYear :
2003
fDate :
4-6 June 2003
Firstpage :
5203
Abstract :
In this paper the problem of determining necessary and sufficient conditions for the Lyapunov function for a pair of stable linear time-invariant systems whose system matrices, A1, A2, are in companion form is considered. It is shown that a necessary and sufficient condition for the existence of such a function is that the matrix product A1A2 does not have an eigenvalue that is real and negative. Examples are presented to illustrate the result.
Keywords :
Lyapunov methods; eigenvalues and eigenfunctions; linear matrix inequalities; linear systems; common quadratic Lyapunov functions; companion form; eigenvalue; linear time-invariant systems; stable LTI systems; system matrices; Artificial intelligence; Control systems; Eigenvalues and eigenfunctions; Linear matrix inequalities; Lyapunov method; Polynomials; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2003. Proceedings of the 2003
ISSN :
0743-1619
Print_ISBN :
0-7803-7896-2
Type :
conf
DOI :
10.1109/ACC.2003.1242553
Filename :
1242553
Link To Document :
بازگشت