DocumentCode :
2253523
Title :
Adaptive coordination of decentralized controllers using a centralized neural network
Author :
Yang, Bong-Jun ; Calise, Anthony J. ; Craig, James I. ; Kim, Kilsoo
Author_Institution :
Guided Syst. Technol., Inc., McDonough, GA, USA
fYear :
2008
fDate :
9-11 Dec. 2008
Firstpage :
5010
Lastpage :
5015
Abstract :
An adaptive approach that augments existing decentralized linear controllers is considered. By employing a neural network as a centralized element, the approach greatly broadens the class of system for which linear decentralized controllers can be designed. The stability proof naturally follows from the viewpoint that a set of decentralized controllers are a special class of multi-input multi-output controllers of an existing central method. The approach is illustrated using an inverted flexible pendulum in which a neural network coordinates an acceleration controller with a controller for an rigid inverted pendulum.
Keywords :
MIMO systems; adaptive control; centralised control; linear systems; neurocontrollers; nonlinear control systems; pendulums; stability; adaptive coordination; centralized neural network; decentralized linear controllers; inverted flexible pendulum; multiinput multioutput controllers; stability proof; Actuators; Adaptive control; Centralized control; Communication system control; Control systems; Neural networks; Programmable control; Proportional control; Sensor arrays; Sensor systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on
Conference_Location :
Cancun
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3123-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2008.4739325
Filename :
4739325
Link To Document :
بازگشت