Title :
On parameter identifiability of multidimensional non-Gaussian ARMA models using cumulant matching
Author :
Tugnait, Jitendra K.
Author_Institution :
Dept. of Electr. Eng., Auburn Univ., AL, USA
Abstract :
A general (possibly asymmetric noncausal and/or nonminimum phase) two-dimensional autoregressive moving average random field model driven by an i.i.d. two-dimensional (2D) non-Gaussian sequence is considered. We address the problem of parameter identifiability of the model parameters given the higher-order (third- or fourth-order, for example) cumulants of the 2D signal on a finite set of lags. The signal observations may be noisy. A key result is the parameter identifiability of 2D MA models. Using the MA parameter identifiability results, the parameter identifiability of AR and ARMA models follows immediately via a novel approach
Keywords :
autoregressive moving average processes; higher order statistics; noise; parameter estimation; signal processing; 2D MA models; AR models; asymmetric noncausal phase; cumulant matching; model parameters; multidimensional nonGaussian ARMA models; noisy signals; nonminimum phase; parameter identifiability; two-dimensional autoregressive moving average random field model; Autoregressive processes; Deconvolution; Higher order statistics; Image coding; Image restoration; Multidimensional systems; Parameter estimation; Parametric statistics; Signal processing; Statistical distributions; Transfer functions;
Conference_Titel :
Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
0-8186-4120-7
DOI :
10.1109/ACSSC.1993.342558